Clinical History

- **H/o stage IV mantle cell lymphoma (MCL) initially diagnosed in the right groin and treated in 2002 with 8 cycles of R-HCVAD with CR**
- **Relapse of MCL in 2004 during the 4th cycle of R maintenance; pt achieved PR, consolidated by XRT**
- **Relapse of MCL in 2008 at the base of tongue; treated with 7 cycles of R/Velcade. Biopsy showed no disease but PET uptake suggested otherwise**
- **In 11/2012 patient was diagnosed with relapsed MCL in leukemic phase and achieved CR, however in 11/2013 her MCL relapsed and she was started on BTK inhibitor ibrutinib that she took until 2/2015 when the bone marrow showed 15% involvement by MCL**
- **Patient was treated with EPOCH+Velcade in 2/2015 and in 3/2015 by hyperfractionated Cytoxan followed by CART19 cells**

- **In 5/2015, the patient reported progressive enlargement of left supraclavicular lymph node**
Tumor morphology (05/2015)
Diagnosis

Poorly differentiated tumor of mesodermal origin with evidence of rhabdomyoblastic and possible neuroblastic differentiation:

poorly differentiated sarcoma (PD-Sc) with striated muscle and (?) limited neural differentiation
Clonal relationship of the PD-Sc and MCL

- Molecular studies performed on sarcoma tissue and cell line: both positive for the immunoglobulin (IgH) gene rearrangement matching the IgH rearrangement of the MCL
- FISH for IgH-Cyclin D1 (CND1) gene fusion: positive in sarcoma cells (as also seen in MCL; not shown)
The key questions:

1. What are the mechanisms of the trans-differentiation?

2. Can we provide any therapeutic guidance?
Trans-differentiation of lymphoma (including MCL) has been described in the past but:

- it has been limited to histiocytic/dendritic sarcoma, hence to malignancies of other immune cells (M Hure et al. 2012)
- causes, let alone mechanisms, remained unknown

Potential causes of trans-differentiation: spontaneous or therapy-induced (history of multiple therapies favors the latter).

In CART19-treated patients tumor conversions have been seen to:

- CD19- plasmablastic lymphoma in CLL pt (A. Evans et al. 2015)
- AML in ALL pts (E. Jacoby et al. 2016)

both these “trans-differentiations” are also fairly limited: one is a form of large-cell transformation, the other “dedifferentiation” to a common progenitor cell
In-depth analysis of patient’s MCL and PD-Sc

- Analysis (RNA-Seq) of MCL and primary and cultured PD-RMSc cells for gene expression
- Analysis (WES) of MCL and PD-Sc cells for gene mutations
- Analysis of MCL and PD-RMSc cells for genome-scale DNA methylation
Comparative genome-scale gene expression analysis in MCL and PD-Sc cells

Similar results were obtained using Hoffman and Biocarta data sets as reference
ENTPD8 (G165R): novel mutation with unknown oncogenic potential

p53 (G266V): pathogenic, seen in carcinomas of lung, colon, pancreas, and liver

Mutation distribution in p53 gene
Gene promoter DNA methylation in MCL vs. PD-Sc

Number of gene promoters evaluated: 24,770

Number of gene promoters differentially methylated between MCL and PD-Sc: **12,054** including 547 promoters of miR genes
Promoter de-methylation in PD-Sc of genes associated with muscle and neuronal differentiation

<table>
<thead>
<tr>
<th>Gene #</th>
<th>GO: contractile fiber</th>
<th>GO: muscle contraction</th>
<th>GO: transmission of nerve impulse</th>
<th>GO: neurotransmitter binding</th>
<th>GO: neuron differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAV3, OBSCN, ABLIM2, MYL4, TNNC2, MYH3, MYL1, ANKRD2, MYLPF, MYLK2, CSRP3, CACNA1S, TNNT3, MYO18B, TRIM54, ANK2, SORBS2, SVIL, ATP2A1, RYR1, MYOM1, PLEC</td>
<td>FXYD1, MYL4, TNNC2, TRPV1, DRD2, MYH3, MYL1, DAG1, ANKRD2, MYLK2, CACNG1, CACNA1S, TNNT3, RYR1, SMPX, CHRND, MYOM1, MB</td>
<td>PRX, KCNMB3, SCN2B, DRD2, GABRA6, SLC12A5, ASZ1, MYLK2, KCNIP1, DMPK, SLC17A7, PDE7B, MUSK, GABRR1, GRM2, P2RX1, RAPSN, NMUR2, SLC1A6, GHRL, CACNA1A, HTR2A</td>
<td>HTR3E, SSTR5, MCHR1, GABRR1, GABRA1, SLC6A11, NMUR2, GABRA6, MC2R, SORCS1, BRS3, CHRND</td>
<td>NRTN, NDN, DRD2, RXRA, BRSK2, CABP4, RPGRI1, CDH4, TP73, LINGO1, HOXC8, DLX1, BDNF, LAMB2, GBX2, GHRL, BMPR1B, PITX3, LHX8, DCLK1, CACNA1A, NGF, CDH23</td>
</tr>
</tbody>
</table>
Acknowledgements

Pathology
A. Bogusz
P. Zhang
S. Brooks

Cytogenetics/FISH
E. Tomczak
J. Morisette

DNA methylation analysis
K. Booher
H. Chung
H.Y. Wang
M. Roth

Cell signaling, gene-specific molecular studies
Q. Zhang

Cell functional analysis and cell line development
X. Liu

DNA mutational analysis
CHOP genomic core
H.Y. Wang

RNA expression analysis
E. Orlando
H. Bitter

Flow cytometry
Qun-bin Xiong

Cytokine expression analysis
S.F. Lacey
J. Melenhorst

Clinical
S. Schuster

Panel Dx: Mantle cell lymphoma transdifferentiated to sarcoma