Session 7
Summary

Magdalena Czader, MD, PhD
David Czuchlewski, MD

MOLECULAR GENETICS OF HEMATOPOIETIC NEOPLASMS
Cases according to 2016 WHO classification

- Acute myeloid leukemia: 26
 - AML with recurrent genetic abnormalities: 9
 - AML-MRC: 4
 - AML, NOS: 7
- Acute leukemia of ambiguous lineage: 6 (MPAL, B/myeloid 4)
- Therapy-related myeloid and lymphoid neoplasms: 6
- B lymphoblastic leukemia/lymphoma: 4
- T lymphoblastic leukemia/lymphoma: 2
- Transformation (blast phase) of chronic myeloid neoplasms: 3
Session 7 categories

1. De novo acute leukemias and therapy-related myeloid/lymphoid neoplasms with unusual genetic features
2. Genetic abnormalities indicating residual disease or underlying hematopoietic neoplasm
3. Clonal relationship, clonal evolution and disease heterogeneity
4. Treatment: therapeutic targets and response patterns
5. Prognostic implications
6. Diagnostic dilemmas
De novo AML and therapy-related lymphoid neoplasms with variant or novel KMT2A rearrangements

Case 136 El Hussein
AML, NOS (acute monocytic leukemia, with variant KMT2A translocation)
11M; facial nerve palsy, periorbital bruising, testicular mass, anemia, thrombocytopenia

46, Y, t(X;11) (q26;q23)[17]/46, XY[3]
KMT2A FISH in 98% nuclei (BAP)
Postulated partner: CT45A2

Cerveira N et al. BMC Cancer 2010;10:518
De novo AML and therapy-related lymphoid neoplasms with variant or novel KMT2A rearrangements

Case 302 Paessler
Therapy-related B-ALL with KMT2A-MALM rearrangement
10F; numerous circulating blasts, previous history of Ewing sarcoma

46,XX,inv(11)(q21q23),der(18)t(11;18)(q14.2;q22.2)inv(11)[20].ish
inv(11)(5'MLL+,3'MLL+),der(18)(5'MLL+,3'MLL+)/46,XX[1]/Confirmed by FISH &
ArcherDx NRAS c.181C>A

SNP studies of Ewing sarcoma not suggestive of an underlying cancer predisposition (no loss of p53 or other tumor suppressors)

Case 0306 Mariani
Therapy-related T-ALL with KMT2A-MALM rearrangement
5M; B-LL, BCR-ABL1+ at 2 years of age, currently mediastinal mass and circulating blasts

46,XY, inv(11)(q21q23)[14]/46,XY,idem,+7,+18[4]/46,XY[2]

Menu E et al. BMC Cancer 2017;17:363
De novo AML with JAK2 V617F mutations

Case 96 Gridley
AML-MRC
68M, back pain, B-symptoms, hepatosplenomegaly, circulating blasts, anemia, mild thrombocytopenia; no prior hematologic history

43~46,XY,-4,add(5)(q13),add(7)(q22),add(10)(q22),-13,add(16)(q11.2),-17,-19,-20,+2~5mar[cp19] /46,XY[1]

JAK2 c.1849G>T, DNMT3A c.2644C>T

Case 57 Aynardi
AML, NOS (acute myelomonocytic leukemia, with JAK2 mutation)

Bullinger L et al. JCO 2017;35:934
Acute myeloid leukemias with genetic abnormalities typically seen in lymphoid neoplasms

Case 37 Xu
AML-MRC
49F, pancytopenia, blasts in PB
49,XX,+1,
der(1;12)(q10;q10),+8,+8,+mar[18]
BRAF p.V600E, NPM1 W288fs

Case 116 Sadigh
AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1 presenting as myeloid sarcoma (with FBXW7 mutation)
36M, left back pain, paraspinal mass
FISH: t(8;21)(q22;q21)/ RUNX1-RUNX1T1 and FBXW7 c.1394G>A
Acute myeloid leukemias with genetic abnormalities typically seen in lymphoid neoplasms

Case 224 Teruya-Feldstein
AML, NOS (acute monocytic leukemia, with ALK rearrangement)
58M, leukocytosis with blasts and monocytosis, anemia, thrombocytopenia

t(2;2)(p23;q12) [20] (confirmed by metaphase FISH with break-apart probe)

Negative for FLT3-ITD, NPM1, CEBPA, CKIT mutations

Takeoka K et al. Cancer Genet. 2015;208:85
Lim JH et al. Cancer Genet. 2014;207:40
Lymphoblastic leukemias/lymphomas with genetic lesions typically seen in myeloid neoplasms

Case 66 Devins

B-ALL, NOS (with \textit{U2AF1} mutation)

29M, dyspnea and headaches, blasts in PB, mild anemia and thrombocytopenia

Normal karyotype; \textit{U2AF1} c.101C>T

Case 367 Zhang

Recurrent B-ALL/LBL, NOS (with mutated \textit{ATRX})

20M, h/o B-LL with atypical BCR/ABL1 fusion with recent recurrence

gain of 9q34 (\textit{ABL1}), loss of 9p21 (\textit{CDKN2A})

\textit{ATRX} c.5579A>G

Spinella JF et al. Oncotarget 2016;7:65485
Lindqvist CM et al. Oncotarget 2016;7:64071
Schenkel et al. Epigenetics & Chromatin 2017;10:10
Case 83 Woodham
Therapy-related myeloid neoplasm with features of MPAL, B/myeloid
69M, h/o neuroendocrine carcinoma, s/p chemotherapy/radiation, circulating blasts
46,XY,t(16;21)(q24;q22)[5]/46,sl,del(2)(q24q32),del(7)(q31.2)[2]/46,XY[3]

RUNX1-CBFA2T3; rare, seen primarily in t-AML

Case 232 Kuzu
T lymphoblastic leukemia/lymphoma (with BCR-ABL1 rearrangement)
57M, lymphadenopathy
Cytogenetics and FISH NA; RT-PCR positive for BCR-ABL1 p210

Park IJ et al. Cancer Genetics Cytogenetics 2010;196:105
Case 265 Yuan
B-ALL/LBL, NOS (with MYC rearrangement)
56F, numerous blasts in PB, generalized lymphadenopathy, splenomegaly

46,XX,dup(1)(q12q42)x2,t(8;14)(q24.1;q32),inv(9)(p11q13)[17]/46,XX,inv(9)(p11q13)[3]

Case 348 Chen
MPAL, B/myeloid, NOS (with EWSR1 rearrangement)
10 month old F, pallor, bruising, pancytopenia

46,XX,t(2;22)(q34;q12),add(4)(p15.2)[20]

EWSR1 (22q12) rearrangement confirmed by FISH

Lanocha AA et al. Blood 2017;129: 393
Case 69 Devins
AML with mutated \textit{NPM1}
68M, circulating blasts, anemia and thrombocytopenia

\textit{NPM1, KIT, DNMT3A} and \textit{TET2} at diagnosis; \textit{DNMT3A} and \textit{TET2} persistent on day 31 (blasts 0\%) in unchanged allele frequency; subsequent relapse with the same clone

Case 73 Shanmugam
Leukemia cutis: cutaneous involvement by the patient's known myeloid neoplasm (possibly CMML), with Langerhans cell differentiation
56M, h/o AML, possible underlying CMML, presented with cutaneous papules

\textit{ASXL1, IDH1, KRAS, NRASx2, RUNX1, SRSF1}, seen previously in AML, post-therapy BM suspicious for CMML and in skin
Genetic abnormalities indicating residual disease or prior underlying neoplasm

Case 294 Chen
CML, BCR-ABL1+, in blast phase [with inv(16)(p13.1q22)]
24F, marked leukocytosis with numerous blasts, eosinophilia, basophilia and anemia

46,XX,t(9;22)(q24;q11.2),inv(16)(p13.1q22)[20]

FISH: Positive for BCR-ABL1 fusion and CBFB rearrangement

Interphase FISH confirmed BCR-ABL1 positive neutrophils, and the presence of BCR-ABL1 clone without inv(16)
Clonal relationship, clonal evolution and disease heterogeneity

Case 56 Xu
Therapy-related CMML-2
58F, h/o B-LL with normal karyotype and MLL deletion, developed pancytopenia with monocytosis
Normal karyotype, similar deletion of *KMT2A* gene suggests common clonal origin

Case 81 Al-Ghamdi
ET in blast crisis (with *BCR-ABL1* rearrangement)
70M, 17 year h/o ET, JAK2+, current circulating blasts
46,XY,t(9;22)(q34;q11.2)[20]

Case 94 Snider
AML with mutated *RUNX1* (with cryptic *NUP214-ABL1* rearrangement)
Clonal relationship, clonal evolution and disease heterogeneity

Case 155 Crane

Therapy related-AML

38F, h/o breast carcinoma, treated with chemotherapy and radiation, *BRCA1*+, t-AML, s/p SCT, developed recurrent AML refractory to treatment

Fluctuating *FLT3*, *STAG2* and *CSF3R* (VUS) mutations. *CSF3R* variant confirmed to be a germline mutation of donor origin

Case 184 Yin

AML, NOS (AML with maturation) with clonal evolution upon progression

61M, pancytopenia; recurrent AML, underwent SCT

Stepwise acquisition of new mutations and clone expansion including *FLT3* and *P53*, both associated with inferior survival
Clonal relationship, clonal evolution and disease heterogeneity

Case 187 Al-Ghamdi
Acute myeloid leukemia with t(8;21)(q22;q22.1);RUNX1-RUNX1T1 (and subclonal BCR-ABL1)
39M, flu-like symptoms for 2 weeks and circulating blasts
Late acquisition of BCR-ABL1 in a course of AML is rare and is associated with poor outcome

Case 240 Kaygusuz
1. AML with mutated NPM1. 2. MPN-U
32M, diagnosed with AML and developed thrombocytosis on day 28 of treatment
Initially, NPM1 mutation, after therapy developed JAK2 V617F mutation at increasing VAF
Clonal relationship, clonal evolution and disease heterogeneity

Case 279 Naeini
AML with t(16;16)(p13.1;q22); CBFB-MYH11 (with JAK2 mutations at evolution)
30F, no prior hematologic history, presented with acute leukemia

At initial diagnosis FLT3-ITD and FLT3-TKD, subsequent: JAK2 V617F, JAK2 Exon 12 and WT1

Case 285 Bogusz
AML, NOS (acute monoblastic leukemia, with multiple mutations in RAS pathway and multiple WT1 mutations)
75F, presented with leukocytosis and concern for MPN; 2 weeks later diagnosed with AML

FLT3, KRAS, NRAS, 5 different WT1 mutations, fluctuating over disease course

Case 317 Rangan
B-ALL/LBL with t(9;22)(q34;q11.2); BCR-ABL1 (and BCL2 rearrangement)
59F, leukocytosis with circulating blasts, anemia, thrombocytopenia; prior h/o RA treated with etanercept and methotrexate
Clonal relationship, clonal evolution and disease heterogeneity

Case 297 Zhang
Therapy-related AML and BPDCN
54M, h/o seminoma and t-MDS with trisomy 8 and monosomy 7, progression to t-AML

FISH MDS deletion of 7q or -7 in 97.5% nuclei

TET2, c.2677G>A, VAF 50.78%; and *ZRSR2* c.827+1G>A, VAF 82.66%
Therapeutic targets

Case 177 Mahon
AML with *BCR-ABL1* (and *KMT2A* rearrangement)
47M, referred for treatment from an outside institution
FISH: positive *BCR-ABL1* rearrangement and MLL gene rearrangement

Case 329 Zhou
AML, NOS (with *CSF3R* mutation)
69F, anemia, neutropenia, frequent blasts in PB
CSF3R (T640N), *TET2* (C1193Y), *TET2* (Q622Rfs*17)

Case 301 Jain
AML with mutated NPM1
68F, shortness of breath, leukocytosis, macrocytic anemia, thrombocytopenia
Normal karyotype, mutations: *DNMT3A*, *IDH1*, *NPM1*, *PTPN11*, *RUNX1*
Case 144 Bhattacharyya
Acute myeloid leukemia with mutated \textit{NPM1}

Case 217 Goyal
AML, NOS (AML with maturation) with differentiation
78M, h/o AML, M6 with mutated IDH2

Karyotype pre- and post-treatment: 47,XY,+10[20]
Post-treatment: \textit{IDH2} c.515G>A, VAF 39%, \textit{DNMT3A} c.1227G>A, VAF 41%
Prognostic implications

Case 357 Parilla
AML-MRC [with t(8;16)(p11.2;p13.3); *KAT6A-CREBBP*, arising from prior CMML]
80M, MGUS with progression to MM, persistent monocytosis and dyspoiesis, progression to AML
TET2, SRSF2, SETBP1, ASXL1

SH2017-0148
AML-MRC [with t(1;16;8)(q21;p13;p11); *KAT6A-CREBBP*

Case 252 El Hussein
t-MDS/AML [with t(1;3)(p36;q21)]
88M, h/o NHL, chemotherapy, pancytopenia and abdominal pain
Diagnostic dilemma

Case 30, O’Malley
Acute leukemia of ambiguous lineage vs. BPDCN (with *MYC* rearrangement)
71M, colon cancer, chemotherapy in 1999, current leukemic presentation, no other lesions reported

Complex karyotype, MYC rearrangement (unknown partner)

Case 165 Teruya-Feldstein
First biopsy: T-ALL/LBL
Second biopsy: Blastic undifferentiated neoplasm, not definitively classifiable
23M, HIV+, developed new tender lymphadenopathy
Case 243 Yuksel
MPAL, B/myeloid, NOS
68M, cytopenias, hepatosplenomegaly

IHC: positive CD34, MPO, CD20, CD79a, PAX5, TDT, BOB1 and weak CD19

FC BM: positive HLA_DR, CD19, CD10, CD34, CD38, CD24, sCD22, cCD79a, TDT, CD20 and CD58, partial MPO and CD123

Complex karyotype

SH2017-0119 Frederiksen
B-ALL, BCR-ABL1-like vs. MPAL, B/myeloid
Conclusions
Classification and nomenclature: What to prioritize?

1. Therapy-related MDS/AML

2. AML with classic recurrent genetic abnormalities

3. AML-MRC (complex karyotype or originating from preexisting myeloid neoplasm)
 - if recurrent cytogenetic lesion-mention it
 - morphologic dysplasia does not supersede recurrent genetic lesions, but act as a category in itself in the absence of these lesions

4. AML with mutated NPM1, biallelic CEBPA, RUNX1

5. AML-MRC defined by morphologic dysplasia

6. AML, NOS
 - In myeloid sarcoma-include AML type and myeloid sarcoma as presentation in final diagnosis, e.g. AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1 presenting as myeloid sarcoma
 - Cases of myeloid sarcoma without marrow involvement should be worked-up as acute leukemia (karyotyping, FISH, molecular) and classified as such
Diagnosing MPAL may be challenging in select cases

• Diagnosis is the least challenging in cases with 2 separate populations, each fulfilling criteria for lymphoid or myeloid leukemia

• Most of the true mixed phenotype acute leukemias show heterogeneity in the expression of multiple markers (e.g. multiple myeloid and lymphoid markers are simultaneously positive)

• **Area of controversy:** typical B-ALL immunophenotype positive for only one myeloid marker-myeloperoxidase
Residual disease, underlying hematopoietic neoplasm, clonal relationship and clonal evolution

• Cannot underestimate patient history including prior CBCs and review of original diagnostic slides
 Recommendations of ASH/CAP, NCCN and ELN

• Looking beyond blast population: value of interphase FISH to identify unrecognized underlying CML in cases in blast crisis

• In AML with *BCR-ABL1*: review molecular panels for abnormalities of genes which can support a diagnosis of de novo Ph+ AML (deletion of *IGH, TCR, IKZ, CDNK2A*)

• Testing sequential samples with conventional karyotyping, FISH and molecular genetic studies may be valuable to confirm clonal relationships

• Repeating molecular studies may reveal clonal evolution and identify subclones with therapeutic targets
Therapeutic targets

• Targeted therapy: Which genetic abnormalities should be tested?

• Patterns of response to targeted therapy: Reconciliation of morphologic findings and results of cytogenetic/molecular studies

Dohner et al Blood 2017;129:424