TP53 mutation in a patient with paroxysmal nocturnal hemoglobinuria

LENA STUART, MD

MASSACHUSETTS GENERAL HOSPITAL
Clinical History

74M in overall good health, found to have anemia and thrombocytopenia

Past Medical History
 ◦ Hypertension

Family History
 ◦ CAD (multiple family members)
 ◦ No malignancies or hematologic disorders

Social History
 ◦ Prior smoker (quit 40 years ago)
 ◦ 1x glass red wine per night
Clinical History

Medications
- Irbesartan (BP)
- Aspirin
- Folate
- Glucosamine
- Fish oil
- Vitamin C

Allergies: NKDA
Clinical History

November 2016 (OSH)
- Routine blood work revealed new onset anemia and thrombocytopenia
- Coombs negative
- Normal iron, B12, folate
- No evidence of kidney disease
- No hypothyroidism
- Flow cytometry: paroxysmal nocturnal hemoglobinuria (per report)
 - 58% granulocytes (loss of GPI)
 - 52% monocytes (loss of GPI)
 - 0.3% red blood cells (type II)
 - 15% red blood cells (type III)
Clinical History

January 2017
- Asymptomatic
- Labs drawn
- Bone marrow biopsy
- Molecular studies (NGS)

<table>
<thead>
<tr>
<th></th>
<th>1/6/17</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (K/uL)</td>
<td>5.10</td>
</tr>
<tr>
<td>Hgb (g/dL)</td>
<td>9.6</td>
</tr>
<tr>
<td>HCT (%)</td>
<td>27.4</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>111.4</td>
</tr>
<tr>
<td>PLT (K/uL)</td>
<td>96</td>
</tr>
<tr>
<td>Retics (%)</td>
<td>6.2</td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>1229</td>
</tr>
<tr>
<td>T-Bili (mg/dL)</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Bone Marrow Biopsy

FINAL DIAGNOSIS:

Moderately hypercellular marrow with maturing trilineage hematopoiesis and slight erythroid hyperplasia.

Note: Diagnostic features of MDS are not recognized and there is no evidence of an aplastic process.
Flow (March 2017)

Granulocytes 82.8%

Monocytes 79.6%

RBC II: 0.6%, III: 16.8%
Additional Testing

Cytogenetics:
- 45,X,-Y[15]/46,XY[5]
- Loss of the Y chromosome is commonly seen in older men and although it may reflect a clonal process, and is not considered sufficient to diagnose MDS in a cytopenic patient

SNaPshot @ MGH (1/12/17)
- **TP53** ENSP00000269305.4:p.Tyr163Cys (ENST00000269305.4:c.488A>G)
- 73% variant allelic frequency
- Subsequent NGS
 - Rapid Heme Panel @ BWH (6/2/2017) – 51% VAF
 - SNaPshot @ MGH (8/8/2017) – 63% VAF
Bone Marrow Biopsy, p53
Patient Follow-Up

Progressive anemia resulting in 4U RBC transfusions in 2017

Started on eculizumab in March
- Marked decrease in LDH, but no response in Hgb/Hct
- Lab evidence of an autoimmune hemolytic anemia (DAT+)

Started on steroids
- Side effects not tolerated

Multiple heme-onc consults
- Increased dose of eculizumab
- Consider EPO
- No clear clinical trajectory for controlling hemolysis/symptoms
Discussion

PNH

- Non-malignant clonal disease of hematopoietic stem cells associated with hemolysis, marrow failure and thrombophilia
- Monogenic disease due to somatic mutation in PIGA (required for synthesis of GPI-anchored proteins)
 - Confers growth advantage
 - Leaves cells susceptible to complement destruction (loss of CD55 and CD59)
 - Hemolytic anemia
Discussion

No PIGA mutation!
- Whole exome sequencing of PNH identified multiple other genes with mutations arising as either subclones of PIGA or prior to PIGA (Shen et al, 2014)
 - Similarities to MDS: clonal hematopoiesis, persistent aberrant stem cell clone

Unexpected *TP53* mutation
- Positive strong IHC staining suggestive that mutation is pathogenic
- Associated with aggressive myeloid neoplasms; concerning for evolution to MDS
- No prior reports of *TP53* mutation in PNH
- Primarily reported as a somatic mutation (lung, breast, ovary, GI)
- One report of germline mutation in pediatric patient with osteosarcoma and family history of malignancies (McIntyre 1994)
Discussion

Further workup

- Given high variant allelic frequency, is the mutation germline?
 - No personal or family history of malignancies
- Is the mutation confined to the PNH clone?
 - Attempt at NGS on PNH+ vs. PNH- populations failed (not enough cells sorted)
Panel Diagnosis

Proposed: Paroxysmal nocturnal hemoglobinuria with a pathogenic TP53 mutation (clonal hematopoiesis of indeterminate potential, CHIP)
Acknowledgements

MGH Flow Cytometry and Center for Integrated Diagnostics

Robert Hasserjian, MD
Massachusetts General Hospital

Valentina Nardi, MD
Massachusetts General Hospital

James Weitzman, MD
MGH-West