# Pediatric B-ALL with iAMP21

Society for Hematopathology/European Association for Haematopathology Symposium and Workshop 2017

Case number SH2017-0366

Vera Paulson, MD, PhD and Marian Harris, MD, PhD, Boston Children's Hospital, Boston MA

## Presentation

- 6 year old girl presented to the Emergency Department with several weeks of aches and fatigue, as well as recent onset sore throat and fever
- Physical exam showed pallor, fever, tachycardia, and tachypnea
- Rapid strep test was positive
- CBC showed leukocytosis, anemia, and thrombocytopenia

#### <u>CBC</u>

WBC: 17.4 K cells/uL

• 79% blasts

Platelets: 19 K cells/uL Hemoglobin: 4.1 g/dL

#### Bone marrow aspirate smear



# Core biopsy





## Bone marrow: flow cytometry



- ETV6/RUNX1 FISH
  - Negative for a ETV6/RUNX1 (TEL/AML1) rearrangement.
  - Three, four, and five copies of RUNX1 were observed in 17.5%, 48.5%, and 16.5% of cells, respectively:

nuc ish(ETV6x2,RUNX1x3)[35/200]/(ETV6x2,RUNX1x4)[97/200]/(ETV6x2,RUNX1x5)[33/200]



Additional results:

FISH for a rearrangement or loss/gain of KMT2A (MLL) and for a BCR/ABL1 rearrangement was negative.

### Karyotype: 46,XX,add(21)(q22)[13]/46,XX[7]



# Targeted sequencing: Rapid Heme Panel (RHP)

- Amplicon-based next generation sequencing test
  - Brigham and Women's Hospital, Center for Advanced Molecular Diagnostics
  - Designed for fresh blood and bone marrow samples (EDTA)
- 730 exons in 95 genes
  - Hot spots in oncogenes
  - Whole genes for tumor suppressors
- Approximately 1000x coverage
- Report gives:
  - Sequence alterations with variant allele fraction
  - Copy number alterations based on read count analysis

## RHP genes (targeted exons)

Targeted Gene/Exon List (genomic coordinates available upon request):

| ABL1 e2-e10   | ASXL1 e1-e13    | ATM e2-e63              | BCL11B e4           |
|---------------|-----------------|-------------------------|---------------------|
| BCOR e2-e15   | BCORL1 e1-e12   | BRAF e15                | BRCC3 e3-e11        |
| CALR e9       | CBL e7-e8       | CBLB e9-e11             | CD79B e5-e6         |
| CEBPA el      | CNOT3 e1-e2     | CREBBP e2-e21, e23-31   | CRLF2 e6            |
| CSF1R e22     | CSF3R e14-e18   | CTCF e3-e12             | CTNNB1 e2-e4        |
| CUX1 e1-e21   | CXCR4 e2        | DNMT3A e2-e23           | DNMT3B e2-e23       |
| EED e1-e12    | EGFR e18-e21    | EP300 e18-e27           | ETV6 e1-e8          |
| FANCL e1-e14  | FBXW7 e8-e12    | EZH2 e2-e8, e11-e20     | FLT3 e14-e16, e20   |
| GATA1 e2-e6   | GATA2 e2-e6     | GATA3 e4-e6             | GNAS e8-e9          |
| GNB1 e5-e6    | IDH1 e4         | IDH2 e4                 | IKZF1 e2-e8         |
| IKZF2 e1-e8   | IKZF3 e1~e8     | IL7R e6                 | JAK1 e10-e25        |
| JAK2 e12, e14 | JAK3 e11-e24    | KIT e8-9, e11, e17      | KRAS e2-e5          |
| LUC7L2 e3-e11 | MAP2K1 e2-e3    | MEF2B e3                | MPL e10             |
| MYD88 e5      | NOTCH1 e24-e28  | NOTCH1 e34              | NOTCH2 e24-e28      |
| NOTCH2 e34    | NOTCH3 e25-e26  | NOTCH3 e33              | NPM1 e10-e11        |
| NRAS e2-e5    | PAX5 e3, e6-e7  | NT5C2 e9, e11, e13, e15 | , e17               |
| PDS5B e3-e35  | PHF6 e2-e10     | PDGFRA e10-e21, e23     | PIGA e2-e6          |
| PIM1 e1-e6    | PRPF40B e2-e26  | PIK3CA e2, e10, e21     | PRPF8 e2-e43        |
| PTEN e1-e9    | PTPN11 e1-e15   | RAD21 e2-e14            | RET e7              |
| RIT1 e1-e6    | RPL10 e5        | RUNX1 e2-e9             | SETBP1 e4           |
| SF3B1 e12-e16 | SF1 e1-e10, e13 | SF3A1 e1-e2, e5-e16     | SETD2 e1-e4, e6-e21 |
| SH2B3 e2-e8   | SMC1A e1-e25    | SMC3 e2-e29             | SRSF2 e1            |
| STAG2 e3-e35  | TET2 e3-e11     | STAT3 e2-e17, e21-23    | TLR2 e1             |
| TP53 e2-e11   | U2AF1 e2, e6    | U2AF2 e1-e12            | WHSC1 e17-e18       |
| WT1 e1-e10    | XP01 e15-e16    | ZRSR2 e1-e11            |                     |

# Targeted gene panel results: sequence alterations

- PTPN11 NM\_002834 c.179G>T p.G60V 19.2% of 569 reads
  - Known activating mutation

Targeted sequencing panel: read count analysis High copy-number gain of RUNX1 and loss of U2AF1



B-ALL with intrachromosomal amplification of chromosome 21 (B-ALL with iAMP21)

- Reported as a distinct cytogenetic subtype of B-ALL in 2003
- Included as a provisional subtype of B-ALL in 2016 WHO classification
- Approximately 2% of pediatric B-ALL
- Patients tend to be older with low presenting white blood cells counts

### B-ALL with iAMP21: biology

- Characterized by multiple copies of RUNX1
  - Usually these copies are on chromosome 21
  - May also be on a marker chromosome
- iAMP21 is usually the primary genetic abnormality
  - Majority of cases are near-diploid
    - iAMP21 is sole change in ~20%
    - Whole chromosome or arm-level numeric abnormalities are relatively common, including +X in ~20%
    - Very rare cases reported with concurrent high hyperdiploidy, ETV6-RUNX1, or BCR-ABL1
  - Abnormal chromosome 21 seems to arise through multiple breakage-fusion bridge cycles and chromothripsis
    - Increased risk of B-ALL with iAMP21 in patients with the germline Robertsonian translocation rob(15;21) or a germline ring chromosome 21 r(21)

Robinson et al., Genes, Chromosomes, and Cancer, 2007; Harrison et al., Leukemia, 2014

### B-ALL with iAMP21: detection/diagnosis

- FISH: can be detected using the same FISH assay used to detect ETV6-RUNX1 rearrangement
  - iAMP21 defined as:
    - 5 or more copies of RUNX1 in one nucleus by interphase FISH, or
    - 3 or more copies of RUNX1 on one chromosome by metaphase FISH
    - (Caution: additional copies of chromosome 21 are common in B-ALL, especially hyperdiploid B-ALL, usually 3-4 copies total)
- Karyotype: may be suspected with karyotype findings of add(21), dup(21), der(21), or loss of chromosome 21 associated with gain of a marker chromosome
- Other: may also be detected on sequencing panels with copy number analysis or on copy number arrays (as long as RUNX1 is wellcovered)



ETV6/RUNX1

Amplification

#### B-ALL with iAMP21: prognosis

- Patients with iAMP21 treated with standard therapy show a high risk of relapse
- Treatment on high-risk arms with intensified therapy significantly reduces risk of relapse
  - Effect seen in multiple protocols
  - Most centers now intensify treatment for patients with iAMP21



# Summary

- B-ALL with iAMP21 is a new provisional category in the 2016 WHO categorization
- Approximately 2% of pediatric B-ALL
- Can be detected with FISH for ETV6-RUNX1
  - 5 or more copies of RUNX1 total, or 3 or more copies of RUNX1 on a single chromosome
- Associated with a worse prognosis when treated with standard-risk therapy
  - Treatment with high-risk therapy improves outcome

#### Final panel diagnosis: B-ALL with iAMP21

#### References

- Robinson HM, Harrison CJ, Moorman AV, Chudoba I, Strefford JC. Intrachromosomal amplification of chromosome 21 (iAMP21) may arise from a breakage-fusion-bridge cycle. Genes Chromosomes Cancer. 2007 Apr;46(4):318-26. PubMed PMID: 17243167. 7: Moorman AV, Richards SM, Robinson HM, Strefford JC, Gibson BE, Kinsey SE, Eden TO, Vora AJ, Mitchell CD, Harrison CJ; UK Medical Research Council (MRC)/National Cancer Research Institute (NCRI) Childhood Leukaemia Working Party (CLWP). Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007 Mar 15;109(6):2327-30.
- Robinson HM, Harrison CJ, Moorman AV, Chudoba I, Strefford JC. Intrachromosomal amplification of chromosome 21 (iAMP21) may arise from a breakage-fusion-bridge cycle. Genes Chromosomes Cancer. 2007 Apr;46(4):318-26. PubMed PMID: 17243167.
- Rand V, Parker H, Russell LJ, Schwab C, Ensor H, Irving J, Jones L, Masic D, Minto L, Morrison H, Ryan S, Robinson H, Sinclair P, Moorman AV, Strefford JC, Harrison CJ. Genomic characterization implicates iAMP21 as a likely primary genetic event in childhood B-cell precursor acute lymphoblastic leukemia. Blood. 2011 Jun 23;117(25):6848-55.
- Heerema NA, Carroll AJ, Devidas M, Loh ML, Borowitz MJ, Gastier-Foster JM, Larsen EC, Mattano LA Jr, Maloney KW, Willman CL, Wood BL, Winick NJ, Carroll WL, Hunger SP, Raetz EA. Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children's oncology group studies: a report from the children's oncology group. J Clin Oncol. 2013 Sep 20;31(27):3397-402.
- Moorman AV, Robinson H, Schwab C, Richards SM, Hancock J, Mitchell CD, Goulden N, Vora A, Harrison CJ. Risk-directed treatment intensification significantly reduces the risk of relapse among children and adolescents with acute lymphoblastic leukemia and intrachromosomal amplification of chromosome 21: a comparison of the MRC ALL97/99 and UKALL2003 trials. J Clin Oncol. 2013 Sep 20;31(27):3389-96.
- Harrison CJ, Moorman AV, Schwab C, Carroll AJ, Raetz EA, Devidas M, Strehl S, Nebral K, Harbott J, Teigler-Schlegel A, Zimmerman M, Dastuge N, Baruchel A, Soulier J, Auclerc MF, Attarbaschi A, Mann G, Stark B, Cazzaniga G, Chilton L, Vandenberghe P, Forestier E, Haltrich I, Raimondi SC, Parihar M, Bourquin JP, Tchinda J, Haferlach C, Vora A, Hunger SP, Heerema NA, Haas OA; Ponte di Legno International Workshop in Childhood Acute Lymphoblastic Leukemia. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome. Leukemia. 2014 May;28(5):1015-21.
- Li Y, Schwab C, Ryan S, Papaemmanuil E, Robinson HM, Jacobs P, Moorman AV, Dyer S, Borrow J, Griffiths M, Heerema NA, Carroll AJ, Talley P, Bown N, Telford N, Ross FM, Gaunt L, McNally RJQ, Young BD, Sinclair P, Rand V, Teixeira MR, Joseph O, Robinson B, Maddison M, Dastugue N, Vandenberghe P, Stephens PJ, Cheng J, Van Loo P, Stratton MR, Campbell PJ, Harrison CJ. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature. 2014 Apr 3;508(7494):98-102.

# Acknowledgements

#### **Boston Children's Hospital Dept of Pathology**

Mark Fleming, MD, DPhil Alanna Church, MD Roberto Chiarle, MD Inga Hofmann, MD Olga Weinberg, MD

#### CAMD, Brigham and Women's Hospital

Neal Lindeman, MD Frank Kuo, MD, PhD

#### **Dana-Farber Cancer Institute**

Stephen Sallan, MD Lewis Silverman, MD Donna Neuberg, ScD Kristen Stevenson, MS Traci Blonquist, MS



